

EVALUACIÓN DEL EFECTO DE GUANO BIOESTABILIZADO DE CERDO Y ESTABILIZADO DE PAVO EN LAS CARACTERÍSTICAS FÍSICOQUÍMICAS DEL SUELO Y SU IMPLICANCIA SOBRE EL RENDIMIENTO DE CEREZOS (*Prunus avium* L.) CV. BING

ÍNDICE

RESUMEN	3
OBJETIVO	4
MATERIALES Y MÉTODOS	4
Lugar	4
Datos del cultivo	4
Datos meteorológicos	5
Tratamientos	7
Evaluaciones	10
DISEÑO EXPERIMENTAL Y ANÁLISIS ESTADÍSTICO	11
RESULTADOS	12
Análisis de arginina	12
Análisis químico de suelo	13
Densidad aparente y porosidad	15
Evaluación de brotes	16
Producción y productividad	18
Calidad de fruta	20
Análisis foliar	24
CONCLUSIONES	27
ANEXOS	28

EVALUACIÓN DEL EFECTO DE GUANO BIOESTABILIZADO DE CERDO Y ESTABILIZADO DE PAVO EN LAS CARACTERÍSTICAS FÍSICOQUÍMICAS DEL SUELO Y SU IMPLICANCIA SOBRE EL RENDIMIENTO DE CEREZOS (*Prunus avium* L.) CV. BING

RESUMEN

Con el objetivo de evaluar el efecto del bioestabilizado de cerdo y estabilizado de pavo sobre las característicos fisicoquímicas del suelo y el rendimiento de cerezos cv. Bing, se realizó un estudio en un huerto comercial ubicado en la localidad de Santa Isabel, comuna de Rengo (34° 326' Latitud sur – 70° 913' Longitud oeste), Región de O'Higgins, Chile. Se utilizaron plantas de cerezo (*Prunus avium* L.) cv. Bing, injertadas sobre el portainjerto Gisella 6, plantadas el año 2007 con un marco de plantación de 1,8 x 4,9 m y conducidos en tatura. Este ensayo se llevó a cabo entre el día 27 de mayo de 2019 y el 13 de enero de 2020.

A fin de cumplir con el objetivo planteado, se establecieron 3 tratamientos: fertilización convencional mediante fertirriego (T0), aplicación de bioestabilizado de cerdo (T1); aplicación de estabilizado de pavo (T2). Las aplicaciones se realizaron los días 27 y 28 de mayo de 2019.

Las evaluaciones llevadas a cabo consistieron análisis químico de suelos (i); densidad aparente y porosidad (ii) análisis microbiológico (iii) análisis nutricional de fruto (iv) rendimiento y productividad (v) calidad de fruta (iv).

Considerando las condiciones de este ensayo, se puede concluir que la aplicación de estabilizado de pavo (T2) aumentó el contenido de reservas nitrogenadas (arginina) en raíces diferenciándose del control y del bioestabilizado de cerdo (T1). Además, y en consecuencia con los resultados de arginina, la aplicación de estabilizado de pavo aumentó la producción (rendimiento y carga frutal) y la productividad estandarizada por el tamaño de planta diferenciándose del control y del bioestabilizado de cerdo.

En cuanto a la calidad de fruta se concluye que T2 presentó una menor proporción de fruta más grande (igual o superior a calibre 28), lo cual puede responder a la mayor carga frutal presente en este tratamiento.

OBJETIVO

Evaluar el efecto de guanos bioestabilizado de cerdo y estabilizado de pavo representados por la empresa Pucalán sobre las características del suelo, rendimiento y calidad de fruta en cerezos cv. Bing

MATERIALES Y MÉTODOS

Lugar

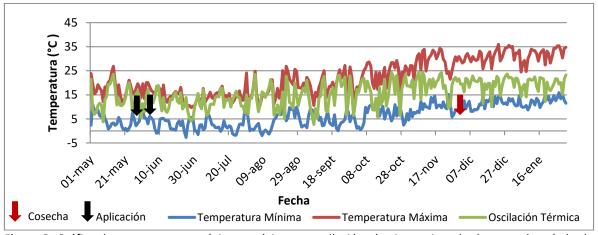
El ensayo se realizó en un huerto perteneciente a la Agrícola Servando Jordán ubicado en la localidad de "Santa Isabel" en la comuna de Rengo (34° 326' Latitud sur – 70° 913' Longitud oeste), Región de O'Higgins, Chile.

Datos del cultivo

Nombre científico	Prunus avium L.
Variedad utilizada	Bing
Portainjerto	Gisella 6
Año de plantación	2007
Distancia de plantación	1,8 m x 4,9 m
Sistema de conducción	Tatura (V)
Duración del ensayo	27 mayo 2019 – en desarrollo

Figura 1. Plantas de cerezos cv. Bing correspondientes al ensayo.

Datos meteorológicos


Todos los datos climáticos fueron obtenidos de una estación meteorológica cercana al predio en el cual se desarrolló el estudio. El Cuadro 1 muestra el registro de las temperaturas mínimas y máximas y las precipitaciones durante el período en que se efectuó el ensayo, mientras que el Cuadro 2 entrega el registro de temperaturas y precipitaciones en los momentos de aplicación. En las Figuras 2 y 3 se observan las gráficas para dichos datos.

Cuadro 1. Media aritmética mensual de temperatura mínima, temperatura máxima, oscilación térmica y precipitación acumulada mensual durante el período del ensayo.

_		Temperatura				
Mes	Mínima	Máxima	Oscilación térmica	Precipitación		
		°C		mm		
Mayo	4,4	17,9	13,5	21,1		
Junio	2,9	14,6	11,7	63,3		
Julio	2,3	14,6	12,3	16,3		
Agosto	3,9	17,9	14,0	0,5		
Septiembre	4,9	19,5	14,6	4,6		
Octubre	6,8	23,3	16,5	2,3		
Noviembre	9,6	28,9	19,3	0,0		
Diciembre	11,5	31,3	19,8	0,0		
Enero	12,2	31,6	19,4	0,0		

Cuadro 2. Registro de temperaturas y precipitaciones el día de la aplicación.

		Temperatura		Drocinitación
Fecha	Mínima	ima Máxima Oscilación t		Precipitación
		°C		mm
27/05/2019	2,1	17,5	15,4	0,0
28/05/2019	3,2	19,6	16,4	0,0

Figura 2. Gráfica de temperaturas máximas, mínimas y oscilación térmica registrada durante el período de ejecución del ensayo.

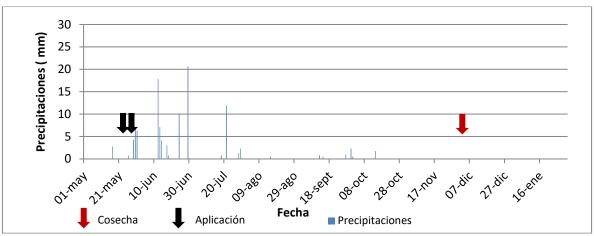


Figura 3. Gráfica de precipitaciones durante el período del ensayo.

Tratamientos

Para el ensayo se utilizó un sector completo de riego, considerando una superficie de 4,5 ha. Las evaluaciones se realizaron en una superficie homogénea en cuanto a características de planta y de rendimiento, compuesto de 2 ha. Se aplicaron 3 tratamientos compuestos por 6 subsectores de evaluación cada uno. Cada subsector constó de 1 planta. El detalle de cada uno de los tratamientos se presenta en el Cuadro 3.

Cuadro 3. Descripción de los tratamientos.

	cripcion de los tratan				Momento		
Tratamiento	Producto	Dosis	Requerimiento	Aplicaciones	de	Fecha de	
		Kg ó L*ha ⁻¹	Unidades/ha		aplicación	aplicación	
			(1) 8,4				
			(2) 345				
то	Programa	Programa	(3) 32			Fertilización	
	convencional*	convencional*	(4) 30,4			de Primavera	
			(5) 4,2				
			(6) 65				
	Bioestabilizado de cerdo + Nitrato Potasio		Zn = 25	1	Receso invernal		
		12 ton + 500 kg	$K_2O = 168$			27 mayo	
			MgO = 210				
T1			S = 27				
			CaO = 420				
			$P_2O_5 = 546$				
			N = 176				
			Zn = 3				
			$K_2O = 336$				
	Estabilizado de	12 ton	MgO = 109				
	pavo +	+	S = 50	1	Receso	27 mayo	
	Nitrato Potasio	500 kg	CaO = 420		invernal		
			$P_2O_5 = 462$				
			N = 235				

^{*}Programa convencional = (1) Sulfato de Zinc, (2) Nitrato de Potasio, (3) Sulfato de Magnesio, (4) Ácido fosfórico, (5) Calcio Sprint y (6) Muriato de Potasio

La aplicación del bioestabilizado de cerdo y el estabilizado de pavo se efectuaron mediante la aplicación directa en la sobrehilera de manera manual en cada lado de la planta, aplicando la dosis extrapolada por planta cerca de la línea de riego. La aplicación del programa convencional fue realizada vía riego.

La Figura 4 muestra un registro fotográfico durante la ejecución del ensayo.

CER Departamento de Producción

Figura 4. Aplicación de bioestabilizados realizada durante el receso invernal (A,B, C y D), muestreo de raíces para análisis de arginina (E y F), muestreo de suelo para análisis químico de suelo (G y H), precosecha (I y J) y evaluación de calidad de fruto (K, L, M y N).

Evaluaciones

Precosecha

Análisis de arginina

Durante el mes de julio, se tomó una muestra de raíces, con el fin de cuantificar las reservas nitrogenadas (arginina) para cada uno de los tratamientos. Se envió a un laboratorio externo una muestra por subsector.

Densidad aparente y porosidad total

Previo al inicio de las aplicaciones de los tratamientos, se realizó un análisis de la densidad aparente del suelo mediante cilindros de aluminio. Se extrajeron muestras a los 20 y 40 cm de profundidad en cada subsector.

Análisis químico de suelos

Se realizó un análisis químico de suelos en tres subsectores por tratamiento, previo a la aplicación de los tratamientos, el cual incluyó: CE (pasta saturada); ph; materia orgánica; N, P, K, S, Cu, Fe, Mn, Zn y B disponibles, y, Ca, Mg, Na y K intercambiables.

Intercepción PAR

Se realizó una medición para estimar el tamaño de la planta, a través de la medición de la radicación solar fotosintéticamente activa intercepta por la planta (PAR) al mediodía solar.

Cosecha

Carga frutal

Se estimó pesando el total de la fruta de una planta central y pesando una submuestra de 100 frutos.

Rendimiento y productividad

Se pesó toda la fruta de proveniente de la planta central con esto se obtuvo el rendimiento de cada tratamiento y se expresó como kg/árbol. La productividad se obtuvo mediante una relación entre los kilogramos obtenidos de cada planta y su respectivo PAR interceptado.

Calidad de la fruta

En una muestra de 100 frutos se evaluó el peso de fruto (g), distribución de calibres (escala comercial desde 22 mm a más de 32 mm) y distribución de color (escala de rojo claro a negro). En una submuestra de 50 frutos se evaluó la firmeza (g/mm), y en 25 frutos la concentración de sólidos solubles (°Brix). En 20 frutos se evaluó materia seca (%).

Poscosecha

Análisis foliar

Durante el mes de enero se realizó un análisis foliar completo de macro y micronutrientes de una muestra por cada subsector.

DISEÑO EXPERIMENTAL Y ANÁLISIS ESTADÍSTICO

Se realizó una prueba t para muestras independientes, en donde se evaluaron 6 subsectores conformados por una planta, para cada uno de los tratamientos.

Para comparar los tratamientos, los resultados de las evaluaciones de los análisis nutricionales, foliares, rendimiento, carga frutal y calidad de fruta se analizaron mediante el software estadístico Infostat ®. En caso de encontrar diferencias entre las medias, estas se separaron mediante una prueba de T-student con un 95% de confianza.

RESULTADOS

Análisis de arginina

Durante el receso invernal se realizó una evaluación del contenido de reservas nitrogenadas, considerando la proporción de arginina en raíces. Los resultados indican que el promedio varió entre 27,64 y 40,64 mg/g para los tratamientos testigo y T2 respectivamente. Se puede observar en el Cuadro 4 que la aplicación del estabilizado de pavo aumentó el contenido de reservas en comparación con el control del huerto (T0) y con la aplicación de bioestabilizado de cerdo (T1) diferenciándose estadísticamente. Por otra parte, el bioestabilizado de cerdo mostró el mismo contenido de arginina que el control del huerto, siendo similares en términos estadísticos.

Cuadro 4. Media y p-valor para el contenido de arginina expresado en mg/g.

Variable	Unidad	Tratamiento	Media	t-student	p-valor
		TO	27,64	T0 vs T1	0,7777
Arginina	mg/g	T1	29,36	T0 vs T2	0,0816*
		T2	40,64	T1 vs T2	0,0487

P-valor ≥ 0,05 indica que no existen diferencias estadísticamente significativas entre tratamientos con 95% confianza. *P-valor ≥ 0,1 indica que no existen diferencias estadísticamente significativas entre tratamientos con 95% confianza

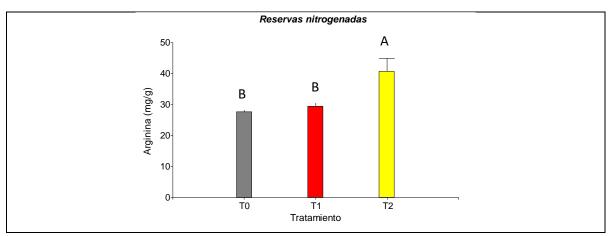


Figura 5. Gráfica del contenido de reservas nitrogenadas (arginina) para cada uno de los tratamientos.

Análisis químico de suelo

Previo a la cosecha, se realizó un análisis químico de suelos con el objetivo de caracterizar los parámetros asociados a la fertilidad y al contenido de macro y microelementos. Para el caso del análisis del contenido de materia orgánica (M.O) se puede observar que la aplicación de estabilizado de pavo mejoró este parámetro, aumentando el porcentaje de materia orgánica con un promedio de 4,4% diferenciándose estadísticamente de la aplicación de bioestabilizado de cerdo (3,7%) y del control del huerto (3,4%). La aplicación de estabilizado de pavo no sólo aumentó el contenido de materia orgánica, sino que también aumentó el de N expresado como mg/kg, diferenciándose estadísticamente del control. El bioestabilizado de cerdo no logró diferenciarse del control en ninguno de los parámetros de fertilidad evaluados.

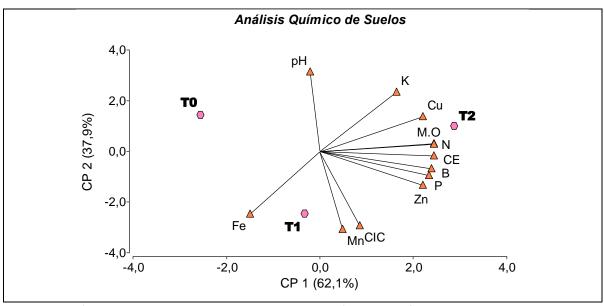
Para el caso del pH, la conductividad eléctrica, y la capacidad de intercambio catiónico los resultados indican que la aplicación de bioestabilizado de cerdo y estabilizado de pavo no afectan las propiedades químicas del suelo, siendo los resultados de estos parámetros similares entre sí. Además, cabe destacar que el contenido de K y P no fueron afectados por la aplicación de bioestabilizado de cerdo y estabilizado de pavo durante el mes de mayo.

Cuadro 5. Media y p-valor para los parámetros de fertilidad y macronutrientes asociado al análisis químico de suelos para cada uno de los tratamientos.

Variable	Unidad	Tratamiento	Media	t-student	p-valor
		T0	5,9	T0 vs T1	0,4573
рН		T1	5,7	T0 vs T2	0,8662
		T2	5,9	T1 vs T2	0,579
		T0	1,2	T0 vs T1	0,3027
CE	dS/m	T1	1,6	T0 vs T2	0,166
		T2	2,1	T1 vs T2	0,4215
		T0	3,4	T0 vs T1	0,2263
M.O	%	T1	3,7	T0 vs T2	0,0152
		T2	4,4	T1 vs T2	0,0598
		T0	39,0	T0 vs T1	0,2372
N	mg/kg	T1	42,0	T0 vs T2	0,0511
		T2	48,0	T1 vs T2	0,0808
		T0	123,3	T0 vs T1	0,625
Р	mg/kg	T1	134,0	T0 vs T2	0,2996
		T2	139,0	T1 vs T2	0,8193
		T0	379,7	T0 vs T1	0,4582
K	mg/kg	T1	330,7	T0 vs T2	0,609
		T2	451,3	T1 vs T2	0,3952
		T0	15,9	T0 vs T1	0,4578
CIC	meq/100g	T1	16,8	T0 vs T2	0,7099
		T2	16,3	T1 vs T2	0,5545

Para el caso del análisis de los microelementos, se puede observar que la aplicación de bioestabilizado de cerdo aumentó el contenido de Fe cuando se comparó con la aplicación de estabilizado de pavo, diferenciándose estadísticamente ambos tratamientos, sin embargo, cuando se comparó el contenido de Fe en relación con el control de huerto no se identificaron diferencias. Además, se puede observar que la aplicación de bioestabilizado aumentó el contenido de Mn en el suelo, diferenciándose del tratamiento huerto.

Cuadro 6. Media y p-valor para los microelementos disponibles asociados al análisis químico de suelos para cada uno de los tratamientos.


Variable	Unidad	Tratamiento	Media	t-student	p-valor
		TO	86,2	T0 vs T1	0,1787
Fe	mg/kg	T1	98,1	T0 vs T2	0,0285
		T2	73,1	T1 vs T2	0,0273
		T0	20,3	T0 vs T1	0,0405
Mn	mg/kg	T1	30,7	T0 vs T2	0,3931
		T2	23,5	T1 vs T2	0,1658
		T0	43,6	T0 vs T1	0,1822
Zn	mg/kg	T1	68,2	T0 vs T2	0,2901
		T2	74,0	T1 vs T2	0,848
		TO	228,7	T0 vs T1	0,9409
Cu	mg/kg	T1	226,0	T0 vs T2	0,3527
		T2	296,7	T1 vs T2	0,3194
		T0	1,7	T0 vs T1	0,5391
В	mg/kg	T1	1,8	T0 vs T2	0,5185
		T2	1,8	T1 vs T2	0,8025

P-valor ≥ 0,05 indica que no existen diferencias estadísticamente significativas entre tratamientos con 95% confianza.

Considerando la totalidad de los parámetros analizados en el análisis químico de suelos, se realizó un análisis de componentes principales con el objetivo de visualizar el comportamiento general de cada una de las variables y su relación con cada uno de los tratamientos. El análisis de la CP1 muestra que el 62,1% de la variabilidad de los datos se responde en el sentido horizontal donde las variables de Cu, M.O, N, C.E, B, P y Zn tienen una mayor relación con el tratamiento aplicado con estabilizado de pavo, mientras que el testigo o el control huerto no muestra una relación con ninguna de las variables estudiadas, tal como se puede ver en la Figura 6.

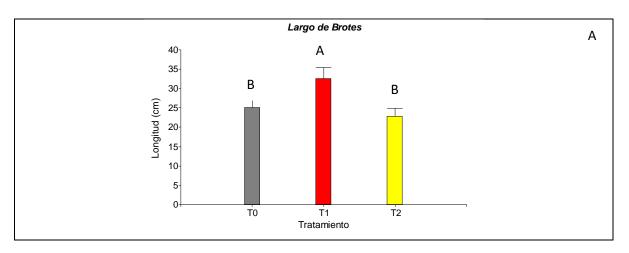
Figura 6. Análisis de componentes principales para los parámetros de fertilidad y microelementos de un análisis químico de suelos.

Densidad aparente y porosidad

La densidad aparente se define como la masa de suelo por unidad de volumen (g/cm³) y que describe la compactación del suelo, representando la relación entre sólidos y espacio poroso y que sirve para evaluar la resistencia del suelo a la elongación de las raíces. Se realizó una evaluación a los 20 y 40 cm de profundidad y los resultados indican que no se identificó un efecto de la aplicación de bioestabilizado de cerdo y estabilizado de pavo en ninguna de las profundidades evaluadas, a pesar de las diferencias vistas en el contenido de materia orgánica y que pueden tener un efecto en la densidad aparente.

Cuadro 7. Media y p-valor para los parámetros de densidad aparente y porosidad en cada uno de los tratamientos.

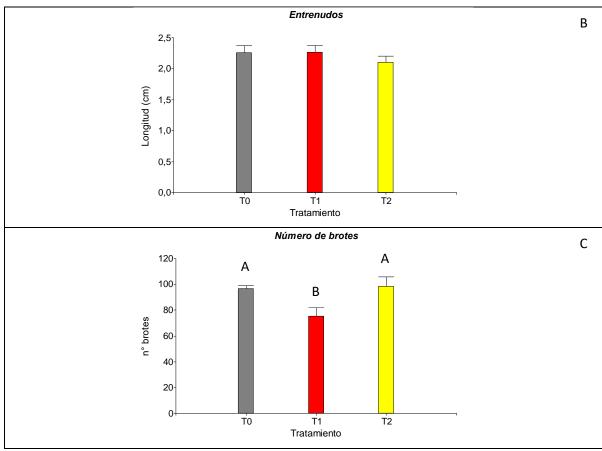
Variable	Profundidad	Unidad	Tratamiento	Media	t-student	p-valor
			T0	1,34	T0 vs T1	0,5608
Da	20	g/cm ³	T1	1,21	T0 vs T2	0,7981
			T2	1,27	T1 vs T2	0,7571
			T0	49,38	T0 vs T1	0,5531
Porosidad	20	%	T1	54,30	T0 vs T2	0,795
			T2	51,95	T1 vs T2	0,7497
		g/cm³	T0	1,65	T0 vs T1	0,1627
Da	40		T1	1,49	T0 vs T2	0,2475
			T2	1,50	T1 vs T2	0,9743
Porosidad			T0	37,53	T0 vs T1	0,1691
	40	%	T1	43,59	T0 vs T2	0,2532
			T2	43,54	T1 vs T2	0,9887


Por otra parte, la porosidad responde a la proporción de poros en el suelo. Si bien en ambas profundidades evaluadas el porcentaje de porosidad (%) fue numéricamente mayor para las aplicaciones de bioestabilizado de cerdo y el estabilizado de pavo, no se diferenciaron estadísticamente, por lo que no fue posible determinar un efecto de los tratamientos en la porosidad.

Evaluación de brotes

Previo a la cosecha y debido a que visualmente se podía identificar un efecto de la aplicación de los tratamientos en los brotes, se realizó una caracterización del largo de brotes, el largo de entrenudos y el número de brotes en cada uno de lo sectores por tratamiento. En el Cuadro 8 se pueden ver los resultados en donde para el caso del largo promedio de brotes, la aplicación de bioestabilizado de cerdo aumentó el largo de brotes diferenciándose estadísticamente del control huerto y de la aplicación de estabilizado de pavo. La aplicación del estabilizado de pavo mostró el mismo número de brotes por planta que el control huerto, sin establecer un efecto directo de su aplicación, sin embargo, el bioestabilizado de cerdo afectó el número de brotes por planta mostrando una media significativamente menor que el control y que el otro tratamiento.

Cuadro 8. Media y p-valor para el largo y número de brotes, además del largo de entrenudos para cada uno de los tratamientos.


Variable	Unidad	Tratamiento	Media	t-student	p-valor
		T0	25,1	T0 vs T1	0,0526
Largo de Brotes	cm	T1	32,5	T0 vs T2	0,4644
		T2	22,8	T1 vs T2	0,0103
Largo Entrenudos		T0	2,3	T0 vs T1	0,9889
	cm	T1	2,3	T0 vs T2	0,321
		T2	2,1	T1 vs T2	0,3039
		T0	96,5	T0 vs T1	0,0282
Número de brotes	n°/planta	T1	75,0	T0 vs T2	0,8193
		T2	98,3	T1 vs T2	0,0443

CER
Departamento de Producción

Figura 7. Gráfica del largo de brotes expresado en cm (A), largo de entrenudos (B) y número de brotes (C) para cada uno de los tratamientos.

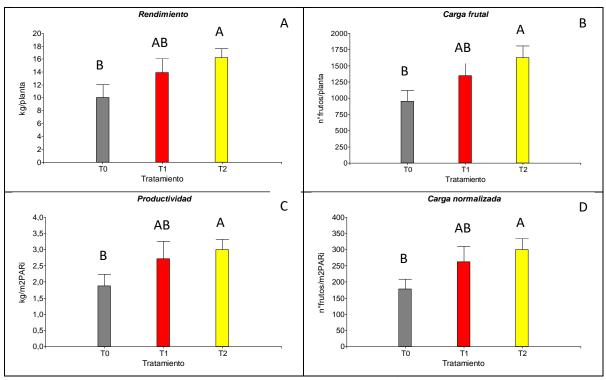
Producción y productividad

Los componentes de la producción evaluados en cosecha están asociados al rendimiento expresado como kg/planta y a la carga frutal expresada como número de frutos/planta. Para el caso del rendimiento, este varió entre 10,0 y 16,2 kg/planta en donde la aplicación del estabilizado de pavo (T2) aumentó el rendimiento diferenciándose del control del huerto (p-valor = 0,0332), por el contrario, la aplicación de bioestabilizado de cerdo (T1) no tuvo efecto en el rendimiento y fue similar al control. La carga frutal a su vez fue evaluada como el número de frutos por planta estimado a partir del peso de fruto y del rendimiento, y el promedio varió entre 952 y 1621 frutos/planta para los tratamientos control y T2 respectivamente. Los resultados indican que la aplicación del estabilizado de pavo en receso invernal aumentó la carga frutal diferenciándose del control del huerto (p-valor = 0,0243).

Cuadro 9. Medias y p-valor para las variables de producción (kg/planta y frutos/planta) y productividad (kg/m²PAR_i y frutos/m²PAR_i) para todos los tratamientos.

Variable	Unidad	Tratamiento	Media	t-student	p-valor
		T0	10,0	T0 vs T1	0,2292
Rendimiento	kg/planta	T1	13,9	T0 vs T2	0,0332
		T2	16,2	T1 vs T2	0,3968
		TO	952,3	T0 vs T1	0,1653
Carga frutal	n°frutos/planta	T1	1343,0	T0 vs T2	0,0243
		T2	1620,8	T1 vs T2	0,3308
	PAR %	TO	60,5	T0 vs T1	0,862
Tamaño planta		T1	61,3	T0 vs T2	0,7314
		T2	61,5	T1 vs T2	0,959
		TO	1,9	T0 vs T1	0,2348
Productividad	kg/m2PARi	T1	2,7	T0 vs T2	0,0419
		T2	3,0	T1 vs T2	0,6574
		TO	178,2	T0 vs T1	0,1777
Carga normalizada	n°frutos/m2PARi	T1	261,9	T0 vs T2	0,0266
		T2	299,8	T1 vs T2	0,5456

P-valor ≥ 0,05 indica que no existen diferencias estadísticamente significativas entre tratamientos con 95% confianza.


El rendimiento por planta está asociado a los manejos culturales y convencionales, pero también al comportamiento de factores abióticos (climáticos) y bióticos (plagas y enfermedades) durante el desarrollo del fruto. Dentro de los factores que se pueden evaluar, y que determinan en gran medida la respuesta del rendimiento está el tamaño y el vigor de las plantas. De este modo resulta fundamental estandarizar los resultados productivos considerando el tamaño de las plantas con el objetivo de aislar su efecto e identificar si la aplicación de los tratamientos induce alguna respuesta en las variables productivas, asumiendo una planta de similares características. Se evaluó el PAR, medición de la radiación fotosintéticamente activa que permite estimar el tamaño de la planta a través de la proyección de su sombra, y se utilizó este valor en conjunto con la distancia de plantación para calcular la productividad (kg/m²PARi) y la carga frutal normalizada (frutos/m²PARi). De esta manera, la evaluación del PAR F muestra que los tratamientos

interceptaron entre 60,5% y 61,5% de la luz incidente sin presentar diferencias entre ellos, reflejando de esta manera que las plantas utilizadas en el ensayo fueron homogéneas y que eran de un vigor medio a bajo.

Los valores de productividad de los tratamientos variaron entre 1,9 y 3,0 kg/m²PAR_i para los tratamientos T0 y T2 respectivamente. La aplicación del estabilizado de pavo aumentó la productividad al igual que lo observado en la producción y la carga frutal, diferenciándose del control del huerto, pero siendo similar estadísticamente a la aplicación de bioestabilizado de cerdo. Del mismo modo, la carga normalizada por el tamaño de planta varió entre 178,2 y 299,8 frutos/m²PAR_i, y se puede observar en el Cuadro 9 que la aplicación del estabilizado de pavo aumentó la carga normalizada diferenciándose del control.

Figura 8. Gráfica de producción expresado en kg/planta (A) y n°frutos/planta (B) y productividad expresado en kg/m²PAR_i (C) y n°frutos/m²PAR_i (D) para cada uno de los tratamientos.

Calidad de fruta

Calibres

Se evaluó la proporción de fruta por cada categoría de calibre para cada uno de los tratamientos evaluados. Los resultados indican que el testigo absoluto concentró un 43,4% de su fruta en la categoría de 28 mm, diferenciándose del tratamiento aplicado con estabilizado de pavo. Del mismo modo, y para la misma categoría de calibre se puede observar que la aplicación de bioestabilizado de cerdo también se diferenció estadísticamente de T2. Para las otras categorías, no se identificaron diferencias entre los tratamientos, siendo todos similares en términos estadísticos. Las diferencias vistas en la categoría 28 de calibre podrían estar sujetas al aumento en el rendimiento en el tratamiento aplicado con el estabilizado de pavo, por lo que existió un efecto en el calibre producto del aumento en los kg/planta.

Cuadro 10. Medias y p-valor para las categorías comerciales de calibre.

Variable	Unidad	Tratamiento	Media	t-student	p-valor
		T0	0,4	T0 vs T1	0,8801
≤22	%	T1	0,3	T0 vs T2	0,1394
		T2	3,6	T1 vs T2	0,1277
		T0	7,0	T0 vs T1	0,4726
24	%	T1	10,7	T0 vs T2	0,1171
		T2	19,4	T1 vs T2	0,2403
		T0	35,6	T0 vs T1	0,2914
26	%	T1	45,2	T0 vs T2	0,1362
		T2	49,6	T1 vs T2	0,4813
		T0	43,4	T0 vs T1	0,1408
28	%	T1	35,2	T0 vs T2	0,017
		T2	21,8	T1 vs T2	0,0593
		T0	13,6	T0 vs T1	0,5121
≥30	%	T1	8,7	T0 vs T2	0,2351
		T2	5,6	T1 vs T2	0,6052

P-valor ≥ 0,05 indica que no existen diferencias estadísticamente significativas entre tratamientos con 95% confianza.

Adicionalmente se comparó la proporción de fruta considerando la sumatoria de calibres igual o superior a 26 mm y también a 28 mm. Los resultados indican que sólo para el caso de los calibres más grandes el tratamiento aplicado con estabilizado de pavo mostró una menor proporción de fruta, diferenciándose del control del huerto, lo cual estaría relacionado directamente con el mayor rendimiento de este tratamiento y con la mayor carga frutal. Por el contrario, la aplicación de bioestabilizado de cerdo, no mostró diferencias con el control en ninguna de las categorías evaluadas.

Cuadro 11. Medias y p-valor para la sumatoria de calibre igual o superior a 26 y 28 mm.

Variable	Unidad	Tratamiento	Media	t-student	p-valor
		T0	92,6	T0 vs T1	0,4957
≥26	%	T1	89,0	T0 vs T2	0,1088
		T2	77,0	T1 vs T2	0,1742
		T0	57,0	T0 vs T1	0,2338
≥28	%	T1	43,8	T0 vs T2	0,0347
		T2	27,4	T1 vs T2	0,1501

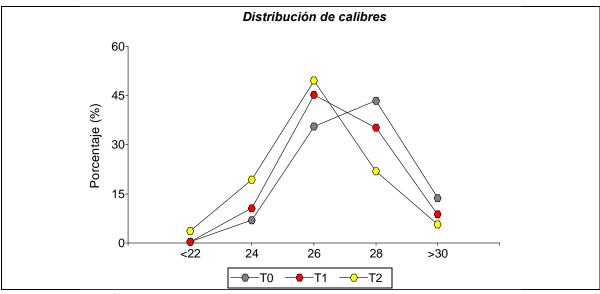
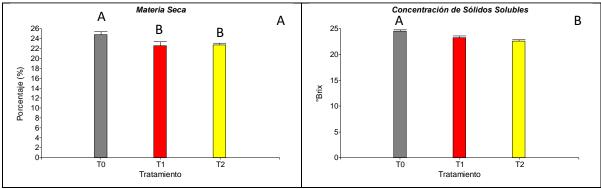


Figura 9. Distribución de calibre para cada uno de los tratamientos.

Peso de fruto, materia seca, firmeza y concentración de sólidos solubles

En el caso del peso de fruto expresado en gramos, los resultados indican que este varió entre 10,2 y 10,4 g sin identificar algún efecto de la aplicación de los tratamientos en esta variable a pesar de las diferencias vistas en el calibre. Del mismo modo, se evaluó el porcentaje de materia seca en relación con la proporción del peso seco respecto del peso fresco. Este porcentaje varió entre 22,6 y 24,8%, en donde ambos tratamientos aplicados ya sea con bioestabilizado de cerdo (T1) o estabilizado de pavo (T2) no tuvieron efecto en este parámetro, siendo el control el que mostró una media significativamente mayor.

Cuadro 12. Medias y p-valor para el parámetro de peso de fruto (g), firmeza (g/mm), sólidos solubles (°Brix) y materia seca (%).


Variable	Unidad	Tratamiento	Media	t-student	p-valor
		T0	10,4	T0 vs T1	0,832
Peso de fruto	Gramos (g)	T1	10,3	T0 vs T2	0,8073
		T2	10,2	T1 vs T2	0,9133
		T0	24,8	T0 vs T1	0,0674*
Materia seca	%	T1	22,6	T0 vs T2	0,0211
		T2	22,7	T1 vs T2	0,928
		T0	293,4	T0 vs T1	0,0743
Firmeza	g/mm	T1	285,7	T0 vs T2	0,025
		T2	283,9	T1 vs T2	0,7025
		T0	24,5	T0 vs T1	0,0058
Sólidos solubles	°Brix	T1	23,3	T0 vs T2	<0,0001
		T2	22,6	T1 vs T2	0,1125

P-valor \geq 0,05 indica que no existen diferencias estadísticamente significativas entre tratamientos con 95% confianza. *P-valor \geq 0,1 indica que no existen diferencias estadísticamente significativas entre tratamientos con 95% confianza

Para el caso del parámetro de concentración de sólidos solubles, se observó que varió entre 22,6 y 24,5 °Brix para los tratamientos T2 y T0 respectivamente, donde la aplicación en receso invernal no tuvo un efecto en mejorar este parámetro a cosecha. Por otro lado, se evaluó la firmeza expresada en g/mm para cada uno de los tratamientos la cual varió entre 283,9 g/mm para el tratamiento T2 y 293,4 g/mm para T0, y se presentaron diferencias a favor del control del huerto sólo cuando se comparó con la aplicación del estabilizado de pavo. Cabe destacar que todos los tratamientos fueron superiores a 250 g/mm, encontrándose en el rango de fruta firme, lo cual es fundamental para llegar al mercado asiático en óptimas condiciones.

Figura 10. Gráfica de materia seca expresada como % (A) y concentración de sólidos solubles expresado como °Brix (B) para cada uno de los tratamientos.

Color

En el Cuadro 13 se presenta la proporción de fruta de cada categoría de color (rojo claro, rojo, rojo caoba, caoba oscuro y negro). A pesar de las diferencias numéricas en las medias de cada tratamiento, no se pudo identificar un efecto de la aplicación de bioestabilizado de cerdo o estabilizado de pavo en esta variable de calidad de fruta, siendo todos los tratamientos similares en términos estadísticos en todas las categorías de color evaluadas.

Cuadro 13. Medias y p-valor para el parámetro de color en cada uno de los tratamientos.

Variable	Unidad	Tratamiento	Media	t-student	p-valor
		T0	0,8	T0 vs T1	>0,9999
Rojo claro	%	T1	0,8	T0 vs T2	0,242
		T2	0,0	T1 vs T2	0,3739
		T0	4,6	T0 vs T1	0,7515
Rojo	%	T1	5,8	T0 vs T2	0,9834
		T2	4,7	T1 vs T2	0,7968
		T0	43,2	T0 vs T1	0,4385
Rojo Caoba	%	T1	34,4	T0 vs T2	0,7408
		T2	47,5	T1 vs T2	0,2997
		T0	50,8	T0 vs T1	0,5368
Caoba oscuro	%	T1	58,6	T0 vs T2	0,8259
		T2	47,7	T1 vs T2	0,4765
		T0	0,6	T0 vs T1	0,7885
Negro	%	T1	0,4	T0 vs T2	0,5248
		T2	0,2	T1 vs T2	0,579

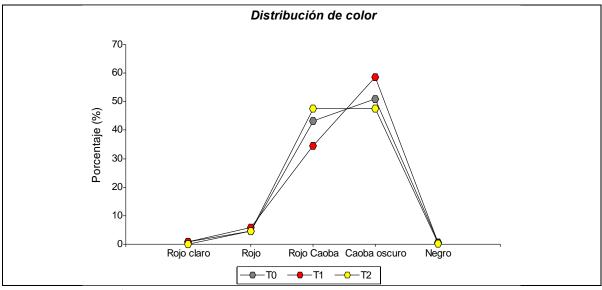


Figura 11. Distribución de color para cada uno de los tratamientos.

Análisis foliar

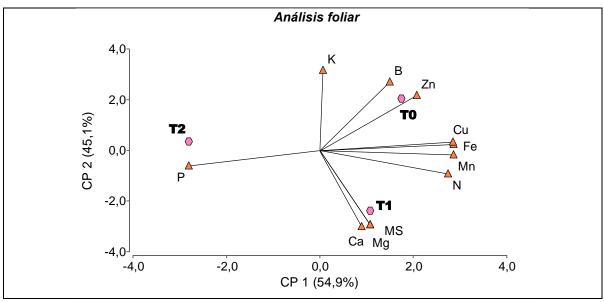
Durante el mes de enero, se colectó una muestra de hoja con el objetivo de evaluar el contenido de macro y micronutrientes en las hojas. Para el caso de los macroelementos esenciales (N, P, K, Ca y Mg) no se pudo identificar un efecto de la aplicación de los tratamientos, ya que las medias para cada una de las variables fueron similares en términos estadísticos (Cuadro 14).

Cuadro 14. Medias y p-valor para el contenido de macroelementos correspondiente al análisis foliar en cada uno de los tratamientos.

Variable	Unidad	Tratamiento	Media	t-student	p-valor
		T0	2,40	T0 vs T1	0,799
N	%	T1	2,46	T0 vs T2	0,148
		T2	2,13	T1 vs T2	0,1049
		T0	0,26	T0 vs T1	0,7619
Р	%	T1	0,26	T0 vs T2	0,3486
		T2	0,28	T1 vs T2	0,6213
		TO	2,39	T0 vs T1	0,2033
K	%	T1	1,90	T0 vs T2	0,2146
		T2	2,19	T1 vs T2	0,4011
		TO	2,14	T0 vs T1	0,0888
Ca	%	T1	2,40	T0 vs T2	0,84
		T2	2,16	T1 vs T2	0,1352
		T0	0,34	T0 vs T1	0,3907
Mg	%	T1	0,37	T0 vs T2	>0,9999
		T2	0,34	T1 vs T2	0,4265

Para el caso del contenido de microelementos, se puede observar en el Cuadro 15, las aplicaciones tanto de bioestabilizado de cerdo como de estabilizado de pavo, mostraron una media significativamente menor en comparación con el testigo cuando se evaluó el contenido de Fe. Del mismo modo, se puede observar que la aplicación de estabilizado de pavo mostró un menor contenido de B, diferenciándose del control huerto. Cabe destacar que, para el caso del Fe, todos los tratamientos se encuentran dentro del rango esperado para cerezos (entre 100 y 250 ppm), mientras que, para el caso del B, todos los tratamientos, incluido el control sobrepasan en rango adecuado para cerezos el cual va entre los 20 y 60 ppm.

Cuadro 15. Medias y p-valor para el contenido de microelementos correspondiente al análisis foliar en cada uno de los tratamientos.


Variable	Unidad	Tratamiento	Media	t-student	p-valor
		TO	185,67	T0 vs T1	0,3593
Fe	ppm	T1	176,33	T0 vs T2	0,0513
		T2	143,00	T1 vs T2	0,0589
		T0	231,33	T0 vs T1	0,899
Mn	ppm	T1	224,67	T0 vs T2	0,2427
		T2	153,33	T1 vs T2	0,0836
		TO	73,00	T0 vs T1	0,1236
Zn	ppm	T1	50,67	T0 vs T2	0,085
		T2	46,33	T1 vs T2	0,3243
		T0	18,00	T0 vs T1	0,6433
Cu	ppm	T1	17,67	T0 vs T2	0,1161
		T2	16,67	T1 vs T2	0,1012
		T0	130,33	T0 vs T1	0,1058
В	ppm	T1	116,33	T0 vs T2	0,0395
		T2	118,00	T1 vs T2	0,8062
		TO	36,63	T0 vs T1	0,3982
Materia seca	%	T1	38,03	T0 vs T2	>0,9999
		T2	36,63	T1 vs T2	0,4096

P-valor ≥ 0,05 indica que no existen diferencias estadísticamente significativas entre tratamientos con 95% confianza

Considerando el comportamiento general de las variables evaluadas en el análisis foliar, se realizó un análisis de componentes principales, el cual responde en su CP1 el 54,9 de la variabilidad de los datos. Se puede observar en términos generales que el contenido de P está fuertemente asociado a la aplicación de estabilizado de pavo (T2), mientras que el contenido de Ca, Mg y M.S están fuertemente influenciados por el tratamiento aplicado con bioestabilizado de cerdo (T1). Por otra parte, se puede ver que el contenido de Zn y B estarían en mayor medida relacionados con el control del huerto, tal como se puede ver en la Figura 12.

Figura 12. Análisis de componentes principales para los parámetros de macro y microelementos de un análisis foliar.

CONCLUSIONES

Considerando las condiciones de este ensayo, se puede concluir que:

- ✓ La aplicación de estabilizado de pavo (T2) aumenta el contenido de reservas nitrogenadas (arginina) en raíces diferenciándose del control y del bioestabilizado de cerdo (T1).
- ✓ La aplicación de estabilizado de pavo (T2) aumenta significativamente el contenido de materia orgánica en el suelo, diferenciándose de los demás tratamientos. Además, T2 aumenta el contenido de N en el suelo diferenciándose del control del huerto.
- ✓ En relación a los micronutriente, la aplicación de bioestabilizado de cerdo aumenta el contenido de Mn diferenciándose del control del huerto.
- ✓ La aplicación de enmiendas orgánicas (T1 y T2) no afectaron la densidad aparente ni la porosidad en el suelo evaluada en el mes de noviembre previo a la cosecha.
- ✓ La aplicación de bioestabilizado de cerdo durante el receso invernal aumenta el largo promedio de brotes en comparación con los demás tratamientos, aunque mostró un menor número de brotes por planta en comparación con el control.
- ✓ La aplicación de estabilizado de pavo aumenta la producción (rendimiento y carga frutal) y la productividad estandarizada por el tamaño de planta diferenciándose del control y del bioestabilizado de cerdo.
- ✓ T2 presenta una menor proporción de fruta más grande (igual o superior a calibre 28), lo cual puede responder a la mayor carga frutal presente en este tratamiento.
- ✓ El tratamiento control, aplicado con la fertilización de primavera mostró mejores medias de materia seca y concentración de sólidos solubles, diferenciándose de las enmiendas orgánicas. Para el caso de la firmeza, sólo se diferenció de la aplicación de estabilizado de pavo.
- ✓ No se identificó un efecto en el color debido a la aplicación de enmiendas orgánicas realizadas durante el receso invernal.
- ✓ La aplicación de enmiendas orgánicas no afecta el contenido de macroelementos evaluados en el análisis foliar de poscosecha, sin embargo, para el caso de los microelementos, el control del huerto mostró medias significativamente superiores de Fe y B diferenciándose de los tratamientos T1 y T2.

ANEXOS

Anexo 1. Análisis de arginina en raíces.

Identificación Cuartel	:	T1 R1 Ranco Carpas	T1 R2	T1 R3	T1 R4	_
Variedad	:					Rango
Edad	:					Adecuado*
N° de Laboratorio	:	375365	375366	375367	375368	
Arginina	mg/g	24,1	25,0	31,3	26,0	12 > 25
Identificación Cuartel	:	T1 R5	T2 R1	T2 R2	T2 R3	
Variedad	:					Rango
Edad	:					Adecuado*
N° de Laboratorio	:	375369	375370	375371	375372	
Arginina	mg/g	31,8	30,8	32,6	28,0	12 > 25
dentificación Cuartel	:	T2 R4	T2 R5	T3 R1	T3 R2	
√ariedad	:					Rango Adecuado*
Edad	:					Auccuado
N° de Laboratorio	:	375373	375374	375375	375376	
Arginina	mg/g	24,6	30,8	40,8	54,7	12 > 25
Identificación Cuartel	:	T3 R3	T3 R4	T3 R5		
Variedad						Rango
Edad	:					Adecuado*
N° de Laboratorio	-	375377	375378	375379		
Arginina	mg/g	32,0	44,7	31,0		12 > 25

Anexo 2. Análisis químico de suelos.

Identificación Cua	ırtel	:	1.1 Pucalan	1.2 Pucalan	1.3 Pucalan	2.1 Pucalan
Profundidad mues	streo(cm)	:				
N° de Laboratorio		:	217393	217394	217395	217396
Fertilidad						
pH (agua,	relación 1:2,5)	1:2,5	6,1 Lig.Acido	5,7 Lig.Acido	5,9 Lig.Acido	5,9 Lig.Acido
C.Eléctrica (en extr	acto)	dS/m	1,00 Sin Problema	0,90 Sin Problema	1,7 Sin Problema	1,9 Sin Problema
Materia orgán	ica	%	3,7 Alto	3,2 Medio	3,3 Medio	3,4 Medio
Nitrógeno dispon	ible (N)	mg/kg	43 Adecuado	36 Medio	38 Medio	41 Adecuado
Fósforo dispor	ible (P)	mg/kg	141 Alto	112 Alto	117 Alto	149 Alto
Potasio dispor	ible (K)	mg/kg	394 Adecuado	294 Adecuado	451 Adecuado	402 Adecuado
CIC (Cap.Intercambio	Cationico)	meq/100g	17,0	14,1	16,5	15,9
Microelementos	disponibles	5				
Hierro	(Fe)	mg/kg	91,5 Alto	84,3 Alto	82,9 Alto	86,6 Alto
Manganeso	(Mn)	mg/kg	17,7 Alto	19,9 Alto	23,2 Alto	24,6 Alto
Zinc	(Zn)	mg/kg	53,2 Adecuado	40,0 Adecuado	37,7 Adecuado	52,6 Adecuado
Cobre	(Cu)	mg/kg	272 Excesivo	179 Excesivo	235 Excesivo	197 Excesivo
Boro	(B)	mg/kg	1,8 Adecuado	1,5 Adecuado	1,7 Adecuado	2,0 Adecuado

Identificación Cuartel		-	2.2 Pucalan	2.3 Pucalan	3.1 Pucalan	3.2 Pucalan
Profundidad muestreo	(cm)	:				
N° de Laboratorio		:	217397	217398	217399	217400
Fertilidad						
pH (agua, relació	n 1:2,5)	1:2,5	5,9 Lig.Acido	5,4 Acido	5,9 Lig.Acido	5,6 Lig.Acido
C.Eléctrica (en extracto)		dS/m	1,1 Sin Problema	1,9 Sin Problema	1,3 Sin Problema	2,1 Lev.Salino
Materia orgánica		%	4,0 Alto	3,8 Alto	4,1 Alto	4,8 Alto
Nitrógeno disponible	(N)	mg/kg	43 Adecuado	42 Adecuado	45 Adecuado	53 Adecuado
Fósforo disponible	(P)	mg/kg	155 Alto	98 Alto	136 Alto	157 Alto
Potasio disponible	(K)	mg/kg	319 Adecuado	271 Adecuado	436 Adecuado	668 Adecuado
CIC (Cap.Intercambio Cation	nico)	meq/100g	18,0	16,4	15,4	16,9
Microelementos disp	onibles					
Hierro	(Fe)	mg/kg	110 Alto	97,6 Alto	76,8 Alto	75,1 Alto
Manganeso	(Mn)	mg/kg	34,8 Alto	32,8 Alto	17,6 Alto	26,8 Alto
Zinc	(Zn)	mg/kg	54,9 Adecuado	97,0 Adecuado	61,9 Adecuado	121 Adecuado
Online	(Cu)	mg/kg	216 Excesivo	265 Excesivo	259 Excesivo	412 Excesivo
Cobre	(Ou)	99				
Boro	(B)	mg/kg	1,7 Adecuado	1,6 Adecuado 3.3 Pucalan	1,4 Adecuado	2,0 Adecuado
	. ,		1,7 Adecuado		1,4 Adecuado	2,0 Adecuado
Boro Identificación Cuartel	(B)		1,7 Adecuado		1,4 Adecuado	2,0 Adecuado
Boro Identificación Cuartel Profundidad muestreo((B)		1,7 Adecuado	3.3 Pucalan	1,4 Adecuado	2,0 Adecuado
Boro Identificación Cuartel Profundidad muestreo(N° de Laboratorio	(B)		1,7 Adecuado		1,4 Adecuado	2,0 Adecuado
Boro Identificación Cuartel Profundidad muestreo(N° de Laboratorio Fertilidad	(B)	mg/kg	1,7 Adecuado	3.3 Pucalan 217401	1,4 Adecuado	2,0 Adecuado
Boro Identificación Cuartel Profundidad muestreo(N° de Laboratorio Fertilidad pH (agua, relació	(B)	mg/kg	1,7 Adecuado	3.3 Pucalan 217401 6,1 Lig.Acido	1,4 Adecuado	2,0 Adecuado
Boro Identificación Cuartel Profundidad muestreo(N° de Laboratorio Fertilidad pH (agua, relació C.Eléctrica (en extracto)	(B)	mg/kg	1,7 Adecuado	3.3 Pucalan 217401 6,1 Lig.Acido 3,0 Lev.Salino	1,4 Adecuado	2,0 Adecuado
Boro Identificación Cuartel Profundidad muestreo(N° de Laboratorio Fertilidad pH (agua, relació C.Eléctrica (en extracto) Materia orgánica	(B)	mg/kg	1,7 Adecuado	3.3 Pucalan 217401 6,1 Lig.Acido	1,4 Adecuado	2,0 Adecuado
Boro Identificación Cuartel Profundidad muestreo(N° de Laboratorio Fertilidad pH (agua, relació C.Eléctrica (en extracto) Materia orgánica Nitrógeno disponible	(B) (cm) (n 1:2,5)	mg/kg	1,7 Adecuado	3.3 Pucalan 217401 6,1 Lig.Acido 3,0 Lev.Salino 4,4 Alto	1,4 Adecuado	2,0 Adecuado
Boro Identificación Cuartel Profundidad muestreo(N° de Laboratorio Fertilidad pH (agua, relació C.Eléctrica (en extracto)	(B) (cm) (cm) (n 1:2,5)	1:2,5 dS/m % mg/kg mg/kg	1,7 Adecuado	3.3 Pucalan 217401 6,1 Lig.Acido 3,0 Lev.Salino 4,4 Alto 46 Adecuado	1,4 Adecuado	2,0 Adecuado
Boro Identificación Cuartel Profundidad muestreo(N° de Laboratorio Fertilidad pH (agua, relació C.Eléctrica (en extracto) Materia orgánica Nitrógeno disponible Fósforo disponible Potasio disponible	(B) (cm) (n 1:2,5) (N) (P) (K)	mg/kg	1,7 Adecuado	3.3 Pucalan 217401 6,1 Lig.Acido 3,0 Lev.Salino 4,4 Alto 46 Adecuado 124 Alto	1,4 Adecuado	2,0 Adecuado
Boro Identificación Cuartel Profundidad muestreo(N° de Laboratorio Fertilidad pH (agua, relació C.Eléctrica (en extracto) Materia orgánica Nitrógeno disponible Fósforo disponible Potasio disponible CIC (Cap.Intercambio Catior	(B) (CCM) (N) (P) (K) (Nico)	mg/kg 1:2,5 dS/m % mg/kg mg/kg mg/kg me/100g	1,7 Adecuado	3.3 Pucalan 217401 6,1 Lig.Acido 3,0 Lev.Salino 4,4 Alto 46 Adecuado 124 Alto 250 Adecuado	1,4 Adecuado	2,0 Adecuado
Boro Identificación Cuartel Profundidad muestreo(N° de Laboratorio Fertilidad pH (agua, relació C.Eléctrica (en extracto) Materia orgánica Nitrógeno disponible Fósforo disponible Potasio disponible CIC (Cap.Intercambio Cation Microelementos disponi	(B) (CCM) (N) (P) (K) (Nico)	mg/kg 1:2,5 dS/m % mg/kg mg/kg mg/kg me/100g	1,7 Adecuado	3.3 Pucalan 217401 6,1 Lig.Acido 3,0 Lev.Salino 4,4 Alto 46 Adecuado 124 Alto 250 Adecuado	1,4 Adecuado	2,0 Adecuado
Boro Identificación Cuartel Profundidad muestreo(N° de Laboratorio Fertilidad pH (agua, relació C.Eléctrica (en extracto) Materia orgánica Nitrógeno disponible Fósforo disponible Potasio disponible CIC (Cap.Intercambio Cation Microelementos disponible	(B) (CCM) (N) (P) (K) (Nico) onibles	mg/kg 1:2,5 dS/m % mg/kg mg/kg mg/kg mg/kg meq/100g	1,7 Adecuado	3.3 Pucalan 217401 6,1 Lig.Acido 3,0 Lev.Salino 4,4 Alto 46 Adecuado 124 Alto 250 Adecuado 16,5	1,4 Adecuado	2,0 Adecuado
Boro Identificación Cuartel Profundidad muestreo(N° de Laboratorio Fertilidad pH (agua, relació C.Eléctrica (en extracto) Materia orgánica Nitrógeno disponible Fósforo disponible Potasio disponible CIC (Cap.Intercambio Cation Microelementos disponio	(B) (CCM) (N) (P) (K) (Nico) onibles (Fe)	mg/kg 1:2,5 dS/m % mg/kg mg/kg mg/kg meq/100g	1,7 Adecuado	3.3 Pucalan 217401 6,1 Lig.Acido 3,0 Lev.Salino 4,4 Alto 46 Adecuado 124 Alto 250 Adecuado 16,5 67,5 Alto	1,4 Adecuado	2,0 Adecuado
Boro Identificación Cuartel Profundidad muestreo(N° de Laboratorio Fertilidad pH (agua, relació C.Eléctrica (en extracto) Materia orgánica Nitrógeno disponible Fósforo disponible Potasio disponible CIC (Cap.Intercambio Cation Microelementos disponible Hierro Manganeso	(B) (CCM) (N) (P) (K) (Nico) onibles (Fe) (Mn)	mg/kg 1:2,5 dS/m % mg/kg mg/kg mg/kg mg/kg meq/100g	1,7 Adecuado	3.3 Pucalan 217401 6,1 Lig.Acido 3,0 Lev.Salino 4,4 Alto 46 Adecuado 124 Alto 250 Adecuado 16,5 67,5 Alto 26,0 Alto	1,4 Adecuado	2,0 Adecuado

Anexo 3. Análisis foliar.

Identificación Cua	Identificación Cuartel		T1-1 C-3 Pucalán	T1-2 C-3 Pucalán	T1-3 C-3 Pucalán	T2-1 C-3 Pucalán	
Variedad Edad		:	Bing	Bing	Bing	Bing	Rango Adecuado*
N° de Laboratorio		-	383083	383084	383085	383086	
Nitrógeno total	(N)	%	2,41	2,15	2,65	2,72	2,00 - 2,60
Fósforo	(P)	%	0,26	0,24	0,27	0,30	0,16 - 0,40
Potasio	(K)	%	2,40	2,19	2,57	1,88	1,20 - 3,00
Calcio	(Ca)	%	2,10	2,24	2,07	2,28	> 1,20
Magnesio	(Mg)	%	0,33	0,35	0,35	0,36	0,29 - 0,80
Hierro	(Fe)	ppm	184	187	186	181	100 - 250
Manganeso	(Mn)	ppm	255	301	138	233	40 - 160
Zinc	(Zn)	ppm	72	93	54	55	20 - 50
Cobre	(Cu)	ppm	18	17	19	18	> 4
Boro	(B)	ppm	131	129	131	125	20 - 60
Materia seca		%	37,8	36,3	35,8	37,5	

Identificación Cua	rtel	:	T2-2 C-3 Pucalán	T2-3 C-3 Pucalán	T3-1 C-3 Pucalán	T3-2 C-3 Pucalán	
Variedad		:	Bing	Bing	Bing	Bing	Rango Adecuado*
Edad		:					, idooddado
N° de Laboratorio		:	383087	383088	383089	383090	
Nitrógeno total	(N)	%	2,46	2,20	2,10	2,22	2,00 - 2,60
Fósforo	(P)	%	0,24	0,25	0,26	0,26	0,16 - 0,40
Potasio	(K)	%	1,38	2,43	2,21	2,31	1,20 - 3,00
Calcio	(Ca)	%	2,61	2,31	2,31	2,08	> 1,20
Magnesio	(Mg)	%	0,41	0,33	0,34	0,34	0,29 - 0,80
Hierro	(Fe)	ppm	161	187	162	128	100 - 250
Manganeso	(Mn)	ppm	234	207	213	124	40 - 160
Zinc	(Zn)	ppm	49	48	46	52	20 - 50
Cobre	(Cu)	ppm	18	17	16	17	> 4
Boro	(B)	ppm	108	116	115	126	20 - 60
Materia seca		%	40,6	36,0	35,4	37,8	
Identificación Cua	rtel	:		T3-3 C-3 Pucalán			<u> </u>
Variedad				Bing			Rango
vanedad Edad				bing			Adecuado*
N° de Laboratorio				383091			
	a.n						0.00 0.00
Nitrógeno total	(N)	%		2,08			2,00 - 2,60
				•			
Fósforo	(P)	%		0,31			0,16 - 0,40
Fósforo Potasio	(P) (K)	% %		0,31 2,05			0,16 - 0,40 1,20 - 3,00
Nitrógeno total Fósforo Potasio Calcio	(P) (K) (Ca)	% % %		0,31 2,05 2,08			0,16 - 0,40 1,20 - 3,00 > 1,20
Fósforo Potasio Calcio	(P) (K)	% %		0,31 2,05			0,16 - 0,40 1,20 - 3,00 > 1,20
Fósforo Potasio Calcio Magnesio Hierro	(P) (K) (Ca) (Mg)	% % %		0,31 2,05 2,08 0,35			0,16 - 0,40 1,20 - 3,00 > 1,20 0,29 - 0,80
Fósforo Potasio Calcio Magnesio Hierro Manganeso	(P) (K) (Ca) (Mg) (Fe) (Mn)	% % %		0,31 2,05 2,08 0,35 139 123			40 - 160
Fósforo Potasio Calcio Magnesio Hierro Manganeso Zinc	(P) (K) (Ca) (Mg) (Fe) (Mn) (Zn)	% % % %		0,31 2,05 2,08 0,35 139 123 41			0,16 - 0,40 1,20 - 3,00 > 1,20 0,29 - 0,80 100 - 250 40 - 160 20 - 50
Fósforo Potasio Calcio Magnesio Hierro Manganeso Zinc	(P) (K) (Ca) (Mg) (Fe) (Mn)	% % % % ppm ppm		0,31 2,05 2,08 0,35 139 123 41			0,16 - 0,40 1,20 - 3,00 > 1,20 0,29 - 0,80 100 - 250 40 - 160 20 - 50 > 4
Fósforo Potasio	(P) (K) (Ca) (Mg) (Fe) (Mn) (Zn)	% % % ppm ppm ppm		0,31 2,05 2,08 0,35 139 123 41			0,16 - 0,40 1,20 - 3,00 > 1,20 0,29 - 0,80 100 - 250 40 - 160 20 - 50